Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 348: 123814, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499170

RESUMO

In the coastal environment, a large amount of microplastics (MPs) can accumulate in the sediments of seagrass beds. However, the potential impact these pollutants have on seagrasses and associated organisms is currently unknown. In this study, we investigated the differences in MPs abundance and composition (i.e., shape, colour and polymer type) in marine sediments collected at different depths (-5 m, -15 m, -20 m) at two sites characterized by the presence of Posidonia oceanica meadows and at one unvegetated site. In the vegetated sites, sediment samples were collected respectively above and below the upper and lower limits of the meadow (-5 m and -20 m), out of the P. oceanica meadow, and in the central portion of the meadow (-15 m). By focusing on the central part of the meadow, we investigated if the structural features (i.e. shoots density and leaf surface) can affect the amount of MPs retained within the underlying sediment and if these, in turn, can affect the associated benthic communities. Results showed that the number of MPs retained by P. oceanica meadows was higher than that found at the unvegetated site, showing also a different composition. In particular, at vegetated sites, we observed that MPs particles were more abundant within the meadow (at - 15 m), compared to the other depths, on unvegetated sediment, with a dominance of transparent fragments of polypropylene (PP). We observed that MPs entrapment by P. oceanica was accentuated by the higher shoots density, while the seagrass leaf surface did not appear to have any effect. Both the abundance and richness of macrofauna associated with P. oceanica rhizomes appear to be negatively influenced by the MPs abundance in the sediment. Overall, this study increases knowledge of the potential risks of MPs accumulation in important coastal habitats such as the Posidonia oceanica meadows.


Assuntos
Alismatales , Microplásticos , Plásticos , Meio Ambiente , Ecossistema , Alismatales/química , Mar Mediterrâneo
2.
Mar Environ Res ; 173: 105515, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34753049

RESUMO

Invasive seaweeds are listed among the most relevant threats to marine ecosystems worldwide. Biodiversity hotspots, such as the Mediterranean Sea, are facing multiple invasions and are expected to be severely affected by the introduction of new non-native seaweeds in the near future. In this study, we evaluated the consequences of the shift from the native Ericaria brachycarpa to the invasive Asparagopsis taxiformis habitat on the shallow rocky shores of Favignana Island (Egadi Islands, MPA, Sicily, Italy). We compared algal biomass and species composition and structure of the associated epifaunal assemblages in homogenous and mixed stands of E. brachycarpa and A. taxiformis. The results showed that the biomass of primary producers is reduced by 90% in the A. taxiformis invaded habitat compared to the E. brachycarpa native habitat. The structure of the epifaunal assemblages displayed significant variations among homogenous and mixed stands. The abundance, species richness and Shannon-Wiener diversity index of the epifaunal assemblages decreased by 89%, 78% and 40%, respectively, from homogenous stands of the native E. brachycarpa to the invasive A. taxiformis. Seaweed biomass was the structural attribute better explaining the variation in epifaunal abundance, species richness and diversity. Overall, our results suggest that the shift from E. brachycarpa to A. taxiformis habitat would drastically erode the biomass of primary producers and the associated biodiversity. We hypothesize that a complete shift from native to invasive seaweeds could ultimately lead to bottom-up effects on rocky shore habitats, with negative consequences for the ecosystem structure, functioning, and the services provided.


Assuntos
Ecossistema , Alga Marinha , Biodiversidade , Eutrofização , Mar Mediterrâneo , Sicília
3.
Mar Environ Res ; 155: 104887, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072989

RESUMO

The impact of plastic debris, and in particular of microplastics (here referred as particles smaller than 5 mm) on aquatic environments has now become a topic of raising concern. Microplastics are particularly abundant in the Mediterranean Sea, potentially exerting substantial pressures on marine organisms at different levels of organization. Ingestion of microplastics has been observed in a large number of marine species. The aim of this work is to test if microplastics produce a feeding impairment in Astroides calycularis, a shallow water, habitat-forming coral endemic to the Mediterranean Sea. Our findings suggest a lack of any avoidance mechanism allowing the polyps to discern between food items and microplastics when occurring simultaneously. Moreover, polyps spend a considerable amount of time on handling microplastic particles. As a consequence, microplastics impair the feeding efficiency in A. calycularis, since polyps may not be fully able to profit from the drifting plankton aggregations. Therefore, we suggest that microplastics can cause a reduction of fitness in A. calycularis, and presumably also in other species characterized by suspension feeding strategy.


Assuntos
Antozoários , Comportamento Alimentar , Microplásticos/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Animais , Ecossistema , Monitoramento Ambiental , Mar Mediterrâneo
4.
Sci Rep ; 9(1): 13469, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530904

RESUMO

Shallow-water marine organisms are among the first to suffer from combined effects of natural and anthropogenic drivers. The orange coral Astroides calycularis is a shallow-water bioconstructor species endemic to the Mediterranean Sea. Although raising conservation interest, also given its special position within the Dendrophylliidae, information about the threats to its health is scant. We investigated the health status of A. calycularis at five locations in northwestern Sicily along a gradient of cumulative human impact and the most probable origin of the threats to this species, including anthropogenic land-based and sea-based threats. Cumulative human impact appeared inversely related to the performance of A. calycularis at population, colony, and polyp levels. Sea-based human impacts appeared among the most likely causes of the variation observed. The reduction in polyp length can limit the reproductive performance of A. calycularis, while the decrease of percent cover and colony area is expected to impair its peculiar feeding behaviour by limiting the exploitable dimensional range of prey and, ultimately, reef functioning. This endangered habitat-forming species appeared susceptible to anthropogenic pressures, suggesting the need to re-assess its vulnerability status. Creating microprotected areas with specific restrictions to sea-based human impacts could be the best practice preserve these bioconstructions.


Assuntos
Antozoários , Ecossistema , Animais , Antozoários/anatomia & histologia , Antozoários/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Humanos , Mar Mediterrâneo , Sicília
6.
Mar Pollut Bull ; 129(2): 469-473, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29079302

RESUMO

Understanding which factors influence the invasion of alien seaweed has become a central concern in ecology. Increasing evidence suggests that the feeding preferences of native herbivores influence the success of alien seaweeds in the new community. We investigated food selection of a generalist native grazer Paracentrotus lividus, in the presence of two alien seaweeds (Caulerpa cylindracea and Caulerpa taxifolia var. distichophylla) and two native seaweeds (Dictyopteris membranacea and Cystoseira compressa). Sea urchins were fed with six experimental food items: C. cylindracea, C. taxifolia var. distichophylla, a mixture of C. cylindracea and C. taxifolia var. distichophylla, D. membranacea, C. compressa and a mixture of D. membranacea and C. compressa. P. lividus ingested all the combinations of food offered, though it preferentially consumed the alien mixture, C. cylindracea and D. membranacea. The alien C. taxifolia var. distichophylla was consumed significantly less than the other food items and, interestingly, it was ingested in a greater amount when mixed with C. cylindracea than when on its own. This finding suggests that C. taxifolia var. distichophylla may become vulnerable to sea urchin grazing when it grows intermingled with C. cylindracea, which does not gain immediate protection from the presence of the very low palatable congeneric seaweed. The present study highlights the potential role of native grazers to indirectly affect the interspecific competition between the two alien seaweeds in the Mediterranean Sea.


Assuntos
Caulerpa , Preferências Alimentares/fisiologia , Herbivoria/fisiologia , Espécies Introduzidas , Paracentrotus/fisiologia , Alga Marinha , Animais , Caulerpa/crescimento & desenvolvimento , Mar Mediterrâneo , Alga Marinha/crescimento & desenvolvimento
7.
Biol Lett ; 13(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29093176

RESUMO

Predation occurs when an organism completely or partially consumes its prey. Partial consumption is typical of herbivores but is also common in some marine microbenthic carnivores that feed on colonial organisms. Associations between nudibranch molluscs and colonial hydroids have long been assumed to be simple predator-prey relationships. Here we show that while the aeolid nudibranch Cratena peregrina does prey directly on the hydranths of Eudendrium racemosum, it is stimulated to feed when hydranths have captured and are handling prey, thus ingesting recently captured plankton along with the hydroid polyp such that plankton form at least half of the nudibranch diet. The nudibranch is thus largely planktivorous, facilitated by use of the hydroid for prey capture. At the scale of the colony this combines predation with kleptoparasitism, a type of competition that involves the theft of already-procured items to form a feeding mode that does not fit into existing classifications, which we term kleptopredation. This strategy of subsidized predation helps explain how obligate-feeding nudibranchs obtain sufficient energy for reproduction from an ephemeral food source.


Assuntos
Gastrópodes/fisiologia , Hidrozoários/fisiologia , Plâncton , Animais , Comportamento de Escolha , Dieta , Comportamento Alimentar , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA